Araştırma Makalesi | Açık Erişim
Düzce İktisat Dergisi 2025, Clt. 6(2) 49-73
ss. 49 - 73
Yayın Tarihi: Haziran 12, 2025 | Görüntüleme Sayısı: 0/0 | İndirilme Sayısı: 0/0
Özet
Bu çalışma, finansal krizlerin önceden tahmin edilebilirliğinin ekonomik ve sosyal maliyetleri azaltmadaki kritik rolünden hareketle, Türkiye'de finansal krizleri öncü göstergeler aracılığıyla tahmin etmeyi amaçlayan bir erken uyarı sistemi geliştirmeyi hedeflemektedir. 2004-2024 dönemi için, uluslararası rezervler, döviz kuru ve faiz oranları kullanılarak oluşturulan Finansal Baskı Endeksi (FBE) ile 8 farklı finansal kriz dönemi tespit edilmiş ve Türkiye ekonomisine ait 18 temel makroekonomik ve finansal gösterge kullanılarak rassal orman algoritmasının tahmin performansı değerlendirilmiştir. Elde edilen sonuçlar, rassal orman algoritmasının kriz tahmininde yüksek bir başarı sergilediğini ortaya koymakta, finansal krizlerin temel ekonomik belirleyicilerinin belirlenmesine olanak sağlayarak politika yapıcılar için kapsamlı bir karar alma sürecini desteklemektedir. Bu çalışma, finansal kriz tahmininde makine öğrenmesi yöntemlerinin potansiyelini vurgularken modelin yorumlanabilirliğinin de altını çizerek finansal istikrarın sağlanmasına yönelik politika önerileri sunmaktadır.
Anaktar kelimeler: Tahminleme, finansal krizler, rassal orman, finansal baskı endeksi
APA 7th edition
URAL, M.M.S.M. (2025). Rassal Orman Algoritmasına Dayalı Olarak Türkiye’de Finansal Krizlerin Tahminlenmesi. Düzce İktisat Dergisi, 6(2), 49-73.
Harvard
URAL, M. (2025). Rassal Orman Algoritmasına Dayalı Olarak Türkiye’de Finansal Krizlerin Tahminlenmesi. Düzce İktisat Dergisi, 6(2), pp. 49-73.
Chicago 16th edition
URAL, Merve MERT SARITAS; Mert (2025). "Rassal Orman Algoritmasına Dayalı Olarak Türkiye’de Finansal Krizlerin Tahminlenmesi". Düzce İktisat Dergisi 6 (2):49-73.
Aizenman, J., & Binici, M. (2016). Exchange market pressure in OECD and emerging economies: Domestic vs. external factors and capital flows in the old and new normal. Journal of International Money and Finance, 66, 65-87.
Akçalı, B. Y. (2015). MIST Ülkeleri Finansal Baskı Endeksleri (FBE)nin Yapay Sinir Ağları ve Box-Jenkıns Yöntemleriyle Tahmin Edilerek Finansal Krizlerin Öngörülmesi. Muhasebe Bilim Dünyası Dergisi, 17(2), 347-384.
Alessi, L., & Detken, C. (2018). Identifying excessive credit growth and leverage. Journal of financial stability, 35, 215-225.
Altıntaş, H., & Öz, B. (2007). Para Krizlerinin Sinyal Yaklaşımı ile Öngörülebilirliği: Türkiye Uygulaması. Anadolu University Journal of Social Sciences/Anadolu Üniversitesi Sosyal Bilimler Dergisi, 7(2).
Anderson, R. G., Bordo, M., & Duca, J. V. (2017). Money and velocity during financial crises: From the great depression to the great recession. Journal of Economic Dynamics and Control, 81, 32-49.
Apostolakis, G. N., Giannellis, N., & Papadopoulos, A. P. (2019). Financial stress and asymmetric shocks transmission within the Eurozone. How fragile is the common monetary policy?. The North American Journal of Economics and Finance, 50, 101006.
Avcı, M. A., & Altay, N. O. (2013). Finansal Krizlerin Sinyal Yaklaşımı ile Öngörülmesi: Türkiye, Arjantin, Tayland ve İngiltere için Bir Analiz. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (14), 47-58.
Avcı, M. A., & Altay, N. O. (2014). Finansal krizlerin öngörüsünde regresyon ağaçları modeli: Gelişmekte olan ülkelere yönelik bir analiz. Uluslararası İktisadi ve İdari İncelemeler Dergisi.
Aydin, A. D., & Cavdar, S. C. (2015). Prediction of financial crisis with artificial neural network: an empirical analysis on Turkey. International journal of financial research, 6(4), 36.
Aydin, Ü. (2022). Türkiye’de 1980 Sonrası dönemde yaşanan ekonomik krizlerin analizi. İzmir Akademi Derneği.
Bayram Arlı, N., Barca, O., & Görentaş, M. B. (2022). Rassal Orman. Bayram Arlı, N., Gürsakal, S. & Engin, M. (Der.), Denetimli Makine Öğrenmesi Algoritmaları (119-148). Ankara: Nobel Yayıncılık.
Beutel, J., List, S., & von Schweinitz, G. (2019). Does machine learning help us predict banking crises?. Journal of Financial Stability, 45, 100693.
Bluwstein, K., Buckmann, M., Joseph, A., Kapadia, S., & Şimşek, Ö. (2023). Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach. Journal of International Economics, 145, 103773.
Breiman, L., Friedman, J. H., Olshen, R. A., ve Stone, C. J. (1984). Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA.
Calvo, G. A., & Reinhart, C. M. (2002). Fear of floating. The Quarterly journal of economics, 117(2), 379-408.
Calvo, G. A., Leiderman, L., & Reinhart, C. M. (1996). Inflows of Capital to Developing Countries in the 1990s. Journal of economic perspectives, 10(2), 123-139.
Casabianca, E. J., Catalano, M., Forni, L., Giarda, E., & Passeri, S. (2022). A machine learning approach to rank the determinants of banking crises over time and across countries. Journal of International Money and Finance, 129, 102739.
Catao, L. A., & Terrones, M. E. (2005). Fiscal deficits and inflation. Journal of Monetary Economics, 52(3), 529-554.
Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., & Vlachogiannakis, N. (2018). Forecasting stock market crisis events using deep and statistical machine learning techniques. Expert systems with applications, 112, 353-371.
Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble machine learning: Methods and applications, 157-175.
Çakmak, U. (2013). Finansal kırılganlık Endeksi (Türkiye 1989-2011) ve Yorumlar. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 32(1), 239-260.
Çeşmeci, Ö., & Önder, A. Ö. (2008). Determinants of currency crises in emerging markets: The case of Turkey. Emerging Markets Finance and Trade, 44(5), 54-67.
Davis, E. P., & Karim, D. (2008). Could early warning systems have helped to predict the sub-prime crisis?. National Institute Economic Review, 206, 35-47.
Demirgüç-Kunt, A., & Detragiache, E. (1998). Financial liberalization and financial fragility (No. 1917). World Bank Publications.
Dornbusch, R. (2002). 16. A Primer on Emerging-Market Crises. In S. Edwards & J. Frankel (Ed.), Preventing Currency Crises in Emerging Markets (pp. 743-754). Chicago: University of Chicago Press. https://doi.org/10.7208/9780226185057-018
Duttagupta, R., & Cashin, P. (2011). Anatomy of banking crises in developing and emerging market countries. Journal of International Money and Finance, 30(2), 354-376.
Easterly, W., & Rebelo, S. (1993). Fiscal policy and economic growth. Journal of monetary economics, 32(3), 417-458.
Edison, H. J. (2003). Do indicators of financial crises work? An evaluation of an early warning system. International Journal of Finance & Economics, 8(1), 11-53.
Eichengreen, B., Rose, A. K., & Wyplosz, C. (1996). Contagious currency crises NBER Working Paper, No: 5681.
Emin, D. (2017). Türkiye’nin finansal krizleri ve göstergeleri. Finansal Araştırmalar ve Çalışmalar Dergisi, 9(17), 115-128.
Fischer, S., Sahay, R., & Végh, C. A. (2002). Modern hyper-and high inflations. Journal of Economic literature, 40(3), 837-880.
Frankel, J. A., & Rose, A. K. (1996). Currency crashes in emerging markets: An empirical treatment. Journal of international Economics, 41(3-4), 351-366.
Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern recognition letters, 31(14), 2225-2236.
Giannellis, N., & Tzanaki, M. A. (2025). Macroeconomic responses to financial stress shocks: Evidence from the US and the Eurozone. International Economics, 181, 100573.
Goldstein, M., & Turner, P. (1998). Banking crises in emerging economies: origins and policy options. Available at SSRN 52074.
Greenwood, R., Hanson, S. G., Shleifer, A., & Sørensen, J. A. (2022). Predictable financial crises. The Journal of Finance, 77(2), 863-921.
Holopainen, M., & Sarlin, P. (2017). Toward robust early-warning models: A horse race, ensembles and model uncertainty. Quantitative Finance, 17(12), 1933-1963.
Huang, C., Simpson, S., Ulybina, D., & Roitman, A. (2019). News-based sentiment indicators. International Monetary Fund.
Ishrakieh, L. M., Dagher, L., & El Hariri, S. (2019). Not the usual suspects: Critical indicators in a dollarized country’s financial stress index. Finance Research Letters. https://doi.org/10.1016/j.frl.2019.03.037
Jeanne, O., & Rancière, R. (2011). The optimal level of international reserves for emerging market countries: A new formula and some applications. The Economic Journal, 121(555), 905-930.
Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: the causes of banking and balance-of-payments problems. American economic review, 89(3), 473-500.
Kaminsky, G., Lizondo, S., & Reinhart, C. (1998, March). Leading Indicators of Currency Crises, IMF Staff Papers, 45(1). http://dx.doi.org/10.2307/3867328
Karabulut, G., Bilgin, M. H., & Danisoglu, A. C. (2010). Determinants of currency crises in Turkey: Some empirical evidence. Emerging Markets Finance and Trade, 46(sup1), 51-58.
KAS, M. H., & ÇIRPICI, Y. A. (2024). Türkiye’de Finansal Krizlerin Öngörülebilirliği: YSA Tabanlı Erken Uyarı Sistemi. Ekonomik Yaklaşım, 35(130).
Kaya, V., & Yilmaz, O. (2007). Para krizleri öngörüsünde logit model ve sinyal yaklaşımının değeri: Türkiye tecrübesi (No. 2007/1). Discussion Paper.
Kindleberger, C. P. (2000). Manias, panics, and crashes: a history of financial crises. The Scriblerian and the Kit-Cats, 32(2), 379.
Krugman, P. (1979). A model of balance-of-payments crises. Journal of money, credit and banking, 11(3), 311-325.
Lane, P. R., & Milesi-Ferretti, G. M. (2007). The external wealth of nations mark II: Revised and extended estimates of foreign assets and liabilities, 1970–2004. Journal of international Economics, 73(2), 223-250.
Lee, T. H., Ullah, A., & Wang, R. (2020). Bootstrap aggregating and random forest. Macroeconomic forecasting in the era of big data: Theory and practice, 389-429.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
Lin, C. S., Khan, H. A., Chang, R. Y., & Wang, Y. C. (2008). A new approach to modeling early warning systems for currency crises: Can a machine-learning fuzzy expert system predict the currency crises effectively?. Journal of International Money and Finance, 27(7), 1098-1121.
Liu, L., Chen, C., & Wang, B. (2022). Predicting financial crises with machine learning methods. Journal of Forecasting, 41(5), 871-910.
Longstaff, F. A., Pan, J., Pedersen, L. H., & Singleton, K. J. (2011). How sovereign is sovereign credit risk?. American Economic Journal: Macroeconomics, 3(2), 75-103.
Milesi-Ferretti, G. M., & Razin, A. (1996). Current-account sustainability. International Finance Section, Princeton University.
Mishkin, F. S. (1996). The channels of monetary transmission: Lessons for monetary policy.
Obstfeld, M. (1995). The logic of currency crises. In Monetary and fiscal policy in an integrated Europe (pp. 62-90). Berlin, Heidelberg: Springer Berlin Heidelberg.
Obstfeld, M., & Rogoff, K. (1996). Foundations of international macroeconomics. MIT press.
Ozcelebi, O. (2020). Assessing the impacts of financial stress index of developed countries on the exchange market pressure index of emerging countries. International Review of Economics & Finance, 70, 288-302.
Ozcelebi, O., Perez-Montiel, J., & Manera, C. (2024). Bond yield spreads and exchange market pressure in emerging countries. International Journal of Emerging Markets.
Pentecost, E. J., Van Hooydonk, C., & Van Poeck, A. (2001). Measuring and estimating exchange market pressure in the EU. Journal of International Money and Finance, 20(3), 401-418.
Polat, O., & Ozkan, I. (2019). Transmission mechanisms of financial stress into economic activity in Turkey. Journal of Policy Modeling, 41(2), 395-415.
Pontines, V., & Siregar, R. (2008). Fundamental pitfalls of exchange market pressure-based approaches to identification of currency crises. International Review of Economics & Finance, 17(3), 345-365.
Reinhart, C. M., & Rogoff, K. S. (2011). From financial crash to debt crisis. American economic review, 101(5), 1676-1706.
Rodrik, D. (2008). The real exchange rate and economic growth. Brookings papers on economic activity, 2008(2), 365-412.
Santero, T., & Westerlund, N. (1996). Confidence indicators and their relationship to changes in economic activity (No. 170). OECD Publishing.
Shankarpandala, S. (2024). LazyPredict: A library for quick and easy model selection in machine learning. Retrieved from [https://pypi.org/project/lazypredict/]
Soe, T. T., & Kakinaka, M. (2018). Inflation targeting and exchange market pressure in developing economies: Some international evidence. Finance Research Letters, 24, 263-272.
Söyler, H., & Kızılkaya, O. (2018). Para krizlerinin yapay zeka yöntemleri ile tahmini: Türkiye örneği. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 649-666.
Stolbov, M., & Shchepeleva, M. (2016). Financial stress in emerging markets: Patterns, real effects, and cross-country spillovers. Review of Development Finance, 6(1), 71-81.
Tölö, E. (2020). Predicting systemic financial crises with recurrent neural networks. Journal of Financial Stability, 49, 100746.
Truong, C., Sheen, J., Trück, S., & Villafuerte, J. (2022). Early warning systems using dynamic factor models: An application to Asian economies. Journal of Financial Stability, 58, 100885.
Tuzcuoglu, K. (2024). Nonlinear transmission of international financial stress. Economic Modelling, 139, 106805.
Ural, M. & Balaylar, N.A. (2007). Bankacılık sektöründe yüksek risk alımı ve baskı indeksleri. Finans Politik & Ekonomik Yorumlar, 44, 509.
Yildirim, I., Ozsahin, S., & Akyuz, K. C. (2011). Prediction of the financial return of the paper sector with artificial neural networks. BioResources, 6(4).